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A B S T R A C T

How is effort integrated in value-based decision-making? Animal models and human neuroimaging studies pri-
marily linked the anterior cingulate cortex (ACC) and ventral striatum (VS) to the integration of effort in valu-
ation. Other studies demonstrated the role of these regions in invigoration to effort demands, thus it is hard to
separate the neural activity linked to anticipation and subjective valuation from actual performance. Here, we
studied the neural basis of effort valuation separated from performance. We scanned forty participants with fMRI,
while they were asked to accept or reject monetary gambles that could be resolved with future performance of a
familiar grip force effort challenge or a fixed risk prospect. Participants' willingness to accept prospective gambles
reflected discounting of values by physical effort and risk. Choice-locked neural activation in contralateral pri-
mary sensory cortex and ventromedial prefrontal cortex (vmPFC) tracked the magnitude of prospective effort the
participants faced, independent of choice time and monetary stakes. Estimates of subjective value discounted by
effort were found to be tracked by the activation of a network of regions common to valuation under risk and
delay, including vmPFC, VS and sensorimotor cortex. Together, our findings show separate neural mechanisms
underlying prospective effort and actual effort performance.
1. Introduction

Maladaptive sensitivity to effort is known to play a key role in mul-
tiple disorders that feature symptoms of impaired motivation such as
apathy, major depression and schizophrenia (Chong and Husain, 2016;
Cl�ery-Melin et al., 2011; Gold et al., 2013; Salamone et al., 2006).
Furthermore, overweighting of effort costs was found to be linked with
physical inactivity and sedentary lifestyle (Bernacer et al., 2016), a major
risk factor for diseases and millions of premature deaths worldwide each
year (Lee et al., 2012). Understanding how humans evaluate energetic
costs to form decisions and the underlying neural processes offers great
potential for developing treatments and interventions for impaired
motivation. However, despite considerable advances (for review see:
Wallis and Rushworth, 2013), the mechanisms of effort-based deci-
sion-making remain unclear.

Effortful behavior, whether among laboratory participants or
foraging animals, generally demonstrates that effort imposes a cost on
valuation, revealed by preferences for less effortful alternatives
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(Charnov, 1976; Hull, 1943; Rudebeck et al., 2006). Theoretical models
of valuation suggest that the integration of expected cost and benefit
representations guide economic choice behaviors (Padoa-Schioppa,
2011; Rangel et al., 2008). Within these models, effort is integrated with
other motivational determinants as a cost in the computation of subjec-
tive value. Multiple studies have demonstrated the devaluation of re-
wards by effort cost (for review see: Chong et al., 2016). Converging
evidence from animal models and human neuroimaging studies link in-
tegrated value to neural activity within a network of regions that include
the ventral striatum (VS), posterior cingulate cortex, anterior insula and
ventromedial prefrontal cortex (vmPFC; Bartra et al., 2013; Clithero and
Rangel, 2013; Rushworth and Behrens, 2008) and demonstrate modu-
lation of its activity by common costs such as risk (Mohr et al., 2010) and
delay (Carter et al., 2010). However, accounts of effort-based valuation
have instead emphasized the specific role of the anterior cingulate cortex
(ACC) together with VS. For example, animals with lesions to ACC
(Rudebeck et al., 2006; Walton et al., 2003), or depletion of dopamine
within VS (Salamone et al., 2007) fail to allocate effort properly to
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Fig. 1. Summary of behavioral task: Each participant's MVC served as a baseline
(A). Training phase tested performance at 5 grip force levels (B), with real-time
force feedback (C). After the training phase, participants rated the subjective
attractiveness of prospective effort mixed gambles (D) and prospective risk
mixed gambles (E).

N. Aridan et al. NeuroImage 185 (2019) 446–454
maximize available rewards. Patterns of phasic dopamine release within
VS (Day et al., 2010) and the activity of single neurons within ACC reflect
the association of effort cost to expected reward in isolation (Pasquereau
and Turner, 2013) and competitive contexts (Hillman and Bilkey, 2012).
Human neuroimaging studies extended the relationship of VS to
effort-discounted reward (Croxson et al., 2009; Kurniawan et al., 2010)
and the ACC to effort-based cost-benefit analyses (Kurniawan et al.,
2013; Pr�evost et al., 2010). Related studies also implicated primary and
supplementary motor areas (SMA), insula and posterior parietal cortex as
sensitive to expected effort costs (C.J. Burke et al., 2013; Croxson et al.,
2009; Meyniel et al., 2013; Skvortsova et al., 2014). Together,
effort-based valuation studies have consistently emphasized the rela-
tionship of ACC and VS to effortful behavior, but inconsistently present
several possible loci for the integration of effort and value.

Effort relates to the difficulty of performing a behavior, such as
physical force or response rate required within a limited time. Previous
reports typically presented effort costs within passive or forced choice
paradigms that demanded invigoration to meet upcoming effort chal-
lenges (Croxson et al., 2009; Kurniawan et al., 2013; Pr�evost et al., 2010).
This is a distinct process from the prospective imposed cost of effort upon
the subjective value of a potential outcome. Accordingly, recent reports
suggest that ACC and VS activations in effort-based tasks may reflect
these invigoration demands, rather than the valuation processes (Holec
et al., 2014; McGinty et al., 2013; Shenhav et al., 2014). Similarly, single
neurons within ACC were shown to exhibit encoding of task demands
more often than effort-discounted value (Hosokawa et al., 2013). To
specifically target effort- and risk-cost valuation, we developed a para-
digm that presented participants with choices about effort and risk
separated from effort production and outcome resolution. Participants
were first trained to associate cues with physical grip force effort levels.
In a subsequent choice phase, participants rated the subjective attrac-
tiveness of mixed gambles that offered a monetary gain or loss from their
initial endowment. The outcome of these mixed gambles could depend
upon future effort performance. Participants separately made similar
choices in a task with fixed risk prospects. We hypothesized that pro-
spective effort would impose a cost upon decision makers, reflected in
both their willingness to gamble and neural activation related to value.
Neuroimaging analyses examined the relationship of neural activity
during choice to the magnitude of potential gain, loss and effort or risk
present in each gamble. We further separately tested neural correlates of
behavioral model-based predictions of subjective value from each task.
Thus, we present a novel approach to characterize the neural basis of
valuation under prospective effort, a common cost in economic choices.
We share all neuroimaging and behavioral data as well as codes used for
all analyses.

2. Materials and methods

2.1. Participants

Forty-six healthy, right-handed participants recruited from the
University of Texas at Austin community participated in the experi-
ment. Six participants were excluded from further analyses due to either
excessive head movement, MRI artifacts or failure to meet behavioral
criteria described below. The remaining forty participants comprised
the sample group for our fMRI analyses (mean age¼ 22.62 years,
standard deviation¼ 2.90 years, 21 females). Sample size was deter-
mined a priori by a power analysis for a contrast of interest (parametric
prospective effort) from a pilot study of 13 participants (mean
age¼ 21.3 years, standard deviation 2.31 years, 7 females) with the
fMRIpower software package (Mumford and Nichols, 2008). Each
participant provided informed consent prior to the experiment. All
participants had normal or corrected-to-normal vision, reported no
history of psychiatric diagnoses, and neurologic or metabolic illnesses.
The Institutional Review Board at the University of Texas at Austin
approved all experimental procedures.
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2.2. Behavioral paradigm

2.2.1. General methods
Prior to the experiment, participants were endowed with $20 cash.

Participants were instructed that they were participating in a study about
preferences in economic choices. Stimuli presentation and participant
response collection were implemented with custom MATLAB code and
the Psychophysics toolbox (Brainard, 1997).

2.2.2. Baseline force measurement
Once inside the MRI scanner, each participant's maximum voluntary

contraction (MVC) force was assessed with an MR-compatible dyna-
mometer (BIOPAC TSD121B-MRI, BIOPAC Systems Inc., USA). Partici-
pants were prompted to squeeze the dynamometer with their right hand
as hard as possible in three intervals of 2 s interspersed with periods of
rest for 2 s (Fig. 1A). The calibration procedure was performed without
feedback or incentives. The average force assessed by this procedure was
considered the participants' MVC for calibration of the training and test
task phases. After calibration, participants were shown a display with
real-time force feedback for demonstration purposes.

2.2.3. Effort training
To examine the role of effort in economic choices, participants were

first trained to associate color and height cues with the performance of
physical grip effort levels. For each participant, five effort levels were
determined at 30, 40, 50, 60 and 70% of their calibrated MVC (Fig. 1B).
During the effort training phase, participants attempted to complete
physical grip effort production trials without incentives at five levels of
difficulty. Each training run consisted of 80 total trials, 16 trials at each
effort level, drawn randomly from one of five orders optimized for event-
related fMRI. To successfully complete a trial, participants were required
to exert grip force at or above a given effort level for at least 1 s of total
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time within a 2 s response period. Participants received two types of
feedback during the training phase: real-time effort production level
(dynamically adjusted height of red bar in effort display, Fig. 1C) and
success or failure to meet the effort goal on a trial-by-trial basis.

2.2.4. Prospective effort mixed gambles
Following the effort training session, participants rated the attrac-

tiveness of prospective effort mixed gambles. Each mixed gamble pre-
sented participants with three components: a potential gain in addition to
their endowment ($2-$12 in $2 increments); a potential loss from their
endowment ($1-$6 in $1 increments) and one of the five effort levels
established in the previous training session (30, 40, 50, 60 and 70% of
calibrated MVC force; Fig. 1D). There were 180 trials in the choice set, all
36 combinations of potential gain and loss at each of the five effort levels.
Effort level trial order and inter-stimulus interval timing were deter-
mined by an efficiency calculation for the prospective effort contrast of
interest (Kao et al., 2009). Potential gain and loss amounts were drawn
from the choice set for each effort level randomly without replacement.
To encourage participants to reflect on the subjective attractiveness of
mixed prospects rather than a fixed decision rule (e.g. accept all gambles
with potential gain > $6), we asked participants to indicate one of four
responses to each gamble (strongly accept, weakly accept, weakly reject,
and strongly reject) as quickly as possible with a four-button response
box. Participants were instructed that one gamble trial would be drawn at
random at the end of the experiment. If the gamble was accepted, the
resolution of the gamble (monetary gain or loss) would depend upon
successful performance of the indicated effort level five times in suc-
cession without error at the end of the experiment as practiced during the
earlier training session. If the randomly selected gamble trial was pre-
viously rejected, then no gain or loss would occur to their endowment.

2.2.5. Prospective risk mixed gambles
To compare effort-based valuation with valuation under risk, partic-

ipants completed a similar set of prospective risk mixed gambles. This
phase always followed the effort mixed gambles phase to limit potential
framing effects (e.g. thinking of prospective efforts in terms of fixed
probabilities). Prospective risk gambles also presented participants with
three components: a potential gain in addition to their endowment ($2-
$12 in $2 increments), and a potential loss from their endowment ($1-$6
in $1 increments), and one of five winning probability levels (10, 30, 50,
70 and 90%; Fig. 1E). The five levels were selected to span a wide range
of success probabilities. Trial orders and choice sets were constructed
similarly to the previous phase for the prospective risk contrast of in-
terest. Participants indicated one of four responses as above to each trial
and were informed that one trial from this phase would be selected at
random at the end of the experiment and its outcome honored according
to their choice to accept or reject, as in the previous phase.

2.2.6. Confidence ratings
To assess the effect of the grip force effort training paradigm on

subsequent prospective effort gamble valuations, participants were asked
to rate how confident they were that they could perform five successive
grip force trials, as in the training phase, at nine levels (10–90% of their
MVC in 10% increments). Participants used a button pad to freely indi-
cate between 0 and 100% confidence in their ability to successfully
perform a grip force at each effort level. This phase was always
completed after both effort and risk mixed gamble phases to limit
probability-based framing effects during prospective gambles valuations.

2.2.7. Resolution
Finally, while still in the scanner, participants faced the resolution of

each prospective gamble phase. One trial from the prospective effort
mixed gambles phase and one trial from the prospective risk mixed
gambles phase, were randomly selected. For each selected trial, if the
participant indicated ‘strong reject’ or ’weak reject’ to the randomly
drawn gamble, the associated gamble resolution phase ended without
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gain or loss. However, if for the selected trial the participant responded
with ‘strong accept’ or ‘weak accept’, the drawn gamble was played out
as follows: For the selected trial from the prospective effort mixed
gambles phase, participants were required to attempt five consecutive
physical grip force trials at the effort level of the randomly drawn pros-
pect (e.g. 40% in Fig. 1C). For the selected trial from the prospective-risk
mixed gambles phase, participants passively viewed the outcome of the
randomly drawn gamble played out by the computer. For each case,
success resulted in the monetary gain associated with the drawn gamble
and failure resulted with the associated loss. All monetary gains or losses
that incurred in the resolution phase were added or subtracted from the
participant's initial endowment. After the experiment, participants were
debriefed and paid in cash for their time and the results of the mixed
gamble resolutions.

2.3. Behavioral analyses

We tested participants' overall willingness to gamble (proportion of
gambles accepted) prior to other behavioral analyses. This test revealed
two participants that failed to meet a predetermined behavioral
threshold (accepted or rejected more than 95% of all gamble trials) and
excluded them from further analyses. From the training phase, we
calculated mean success rate (percentage of making the goal in effort
trials). We fit a binary-logistic mixed-effects regression model to each of
the mixed gambles phases to predict gamble acceptance with prospective
effort or risk, gain and loss magnitudes as fixed effects and the partici-
pants as random effect. In addition, we fit a linear model to predict
acceptance rates across the different gamble components and reaction
times. Finally, mean confidence rates were calculated from the confi-
dence rating phase. All statistical analyses were performed in R using
lme4 package with a BOBYQA optimizer (Bates et al., 2015). In all cases
the fitted model convergence was achieved prior to the maximal limit of
10,000 iterations. P-values were calculated using the lmerTest package
(Kuznetsova et al., 2017).

2.4. Neuroimaging

2.4.1. Image acquisition
Imaging data were acquired on a 3 T Skyra MRI scanner system

(Siemens) with a 32-channel head coil. Anatomical images for registra-
tion to Montreal Neurological Institute (MNI) template space were ac-
quired with a high-resolution magnetization prepared rapid gradient
echo (MPRAGE) pulse sequence (TR ¼ 1900 ms, TI ¼ 900 ms,
TE¼ 2.43ms, flip angle¼ 9�, FOV¼ 256, voxel size 1.0� 1.0� 1.0mm).
Functional images were acquired with a T2* weighted multiband echo-
planar imaging sequence (TR ¼ 1000 ms, multiband acceleration
factor ¼ 4, iPAT parallel acceleration factor ¼ 2, TE ¼ 30 ms, flip
angle ¼ 63�, FOV ¼ 230, voxel size 2.4 � 2.4 � 2.4 mm; Moeller et al.,
2010). For functional scans, fifty-six gapless axial slices were positioned
30�off the anterior commissure-posterior commissure line to reduce
frontal signal dropout (Deichmann et al., 2003). Higher-order shimming
was used to reduce susceptibility artifacts.

2.4.2. fMRI data preprocessing
Raw DICOM data images were converted to NIFTI format and orga-

nized to conform to the ‘Brain Imaging Data Structure’ specifications
(BIDS; Gorgolewski et al., 2016). Preprocessing was conducted using
FMRIPREP (version 1.0.0-rc13; Esteban et al., 2018; K. Gorgolewski
et al., 2011, 2017). Within the FMRIPREP framework, each T1 weighted
volume was corrected for bias field using N4BiasFieldCorrection v2.1.0
(Tustison et al., 2010) and skullstripped using antsBrainExtraction.sh
v2.1.0 (using OASIS template). Cortical surface was estimated using
FreeSurfer v6.0.0 (Dale et al., 1999). The skullstripped T1w volume was
coregistered to skullstripped ICBM 152 Nonlinear Asymmetrical tem-
plate version 2009c (Fonov et al., 2009) using nonlinear transformation
implemented in ANTs v2.1.0 (Avants et al., 2008). Functional data was
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motion corrected using MCFLIRT v5.0.9 (Jenkinson et al., 2002). This
was followed by co-registration to the corresponding T1-weighted vol-
ume using boundary based registration 9 degrees of freedom - imple-
mented in FreeSurfer v6.0.0 (Greve and Fischl, 2009). Motion correcting
transformations, T1 weighted transformation and MNI template warp
were applied in a single step using antsApplyTransformations v2.1.0 with
Lanczos interpolation. Three tissue classes were extracted from T1w
images using FSL FAST v5.0.9 (Zhang et al., 2001). Voxels from cere-
brospinal fluid and white matter were used to create a mask in turn used
to extract physiological noise regressors using a CompCor (Behzadi et al.,
2007). Mask was eroded and limited to subcortical regions to limit
overlap with gray matter, six principal components were estimated.
Frame-wise displacement (Power et al., 2014) was calculated for each
functional run using Nipype implementation. Spatial smoothing of
functional images was performed with a Gaussian kernel with a
full-width half maximum of 5mm. Data and design matrices were
high-pass filtered with a Gaussian-weighted least-squares straight line fit
with a cutoff period of 100 s. Grand-mean intensity normalization of each
functional image volume's entire four-dimensional data set was per-
formed by a single multiplicative factor.

2.4.3. fMRI data analyses
All neuroimaging analyses focused on neural activity at the time of

prospective valuation. In each whole-brain analysis, general linear
models assessed the relationship of neural activity to mixed gamble
variables or subjective value model predictions. The first whole-brain
parametric model (GLM1) modeled five parametric regressors, three
from the prospective effort mixed gambles phase: monetary gain, mon-
etary loss and physical demand (grip force effort level). To account for
the uncertainty component of the effort phase (probability of not making
the goal), two additional regressors modeled actual success probability
(goal success rate during training), and perceived success probability
(post task confidence rating). A second whole-brain parametric model
(GLM2) modeled three parametric regressors from the prospective risk
mixed gambles phase: monetary gain, monetary loss and prospective risk
level associated with gamble resolution. In both models, parametric
mixed gamble regressors were chosen to identify brain regions wherein
activation or deactivation correlated with magnitude of each regressor,
independent of changes in the other regressors without orthogonaliza-
tion (Mumford et al., 2015). A second set of analyses (GLM3) and (GLM4)
modeled a parametric regressor that reflected an estimate of a partici-
pant's probability of accepting a gamble from the effort- and risk-based
phases, respectively. For each participant, responses were collapsed
into accept or reject categories and a binary logistic regression was fitted
to predict response by the size of the potential gain, loss and effort
(GLM3) or risk (GLM4). We then applied the resulting logistic equation
parameters to generate a predicted probability of gamble acceptance
regressor for each trial for each phase. In a separate whole brain-analysis,
these regressors were used to identify brain regions that tracked the
predicted probability of accepting a gamble, an estimate related to the
subjective value of the gamble at choice. The binary logistic regression
equations followed the forms:

GLM3: pðacceptÞ ¼ eðβ0þβgain �Xgainþβloss �Xlossþβeffort �XeffortÞ
1þ eðβ0þβgain �Xgainþβloss �Xlossþβeffort �XeffortÞ

GLM4: pðacceptÞ ¼ eðβ0þβgain �Xgainþβloss �Xlossþβrisk �XriskÞ
1þ eðβ0þβgain �Xgainþβloss �Xlossþβrisk �XriskÞ

In all GLMs, participants' reaction times were modeled using themean
centered trial-by-trial reaction time. Additional regressors of no interest
included all trials unmodulated (intercept), trials without behavioral
responses, and nine confound regressors derived from preprocessing with
FMRIPREP. These nine regressors included six motion parameters over
time (rigid-body x-y-z translation and rotation transform) and three
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derivative of RMS variance over voxels (standardized, non-standardized
and voxel-wise standardized). All statistical analyses were corrected for
multiple comparisons with Gaussian Field Theory (GFT). Whole-brain
cluster-forming threshold was z¼ 2.3, p< 0.01 and FWE cluster size
threshold of p< 0.05. In addition, we have produced overlapping maps
for each comparison between the different contrasts of interest in the
different GLMs (see supplementary Figs. 1–4), performed a conjunction-
null test for overlapping activity of prospective effort and risk (Nichols
et al., 2005) and a paired t-test for difference between the two tasks.

2.5. Data sharing

Unthresholded whole-brain statistical maps of activations are avail-
able for reference at NeuroVault.org (Gorgolewski et al., 2015; https://
neurovault.org/collections/3955/.) Neuroimaging data necessary to
recreate all analyses will be made available as part of the OpenNeuro
project (Poldrack and Gorgolewski, 2017 ; https://openneuro.org/
datasets/ds001167.) Behavioral data, analysis codes and fMRI analysis
codes as well are available at: osf.io/mb3qw.

3. Results

3.1. Behavioral results

3.1.1. Behavior: effort training
Participants' behavior reflected modulation by effort, whereby suc-

cess rates on effort training trials and post task confidence ratings
decreased as the level of effort increased (Fig. 2A). In the training phase,
increased effort requirements reduced the probability of successful per-
formance (Odds Ratio (OR)¼ 0.92, 95% CI [0.91, 0.93], p< 0.001).
Averaging training performance within each effort level for each
participant showed a strong negative linear correlation of effort level and
training success ratio: (r¼�0.81, t(159)¼�10.12, p< 0.001; see sup-
plementary Table 2 for individual participants results). Similarly, post-
task confidence ratings of effort performance decreased as effort
increased (r¼�0.50, t(319)¼�17.95, p< 0.001; Fig. 2A).

3.1.2. Behavior: mixed gambles
Participants' overall willingness to gamble reflected an effect of pro-

spective effort and risk costs (see Table 1). In the mixed gambles effort
task, as the level of prospective effort increased, probability of gamble
acceptance decreased. Similarly, in the mixed gambles risk task, pro-
spective risk reduced average gamble acceptance rates.

Participants' median reaction times followed a negative quadratic
relationship (i.e. slowest median RT for gambles accepted on average
50% of the time) under prospective effort (R2¼ 0.60, p< 0.001) and
prospective risk (R2¼ 0.78, p< 0.001; Fig. 2B). To illustrate participants'
choice preferences for mixed gambles under prospective effort and risk,
gain and loss levels were collapsed into 3 bins each. Group average
acceptance rates for effort-based gambles (Fig. 2C) and risk-based gam-
bles (Fig. 2D) illustrate a pattern of decreased willingness to gamble
across the entire choice set as prospective effort or risk increased.

3.2. Neuroimaging results

3.2.1. Whole-brain parametric mixed gambles
Parametric analyses of neural activation at choice (GLM1, GLM2)

revealed activity in distinct brain regions that was modulated by the
components of effort- and risk-based mixed gambles tasks (Fig. 3).
Increased activation for increasing prospective effort was found in left
primary sensory cortex and increased activity for decreasing physical
demand was found in vmPFC (Fig. 3A). In contrast, increased activation
for increased prospective risk showed a broader region that included left
sensorimotor cortex and left superior parietal lobule. Decreased activa-
tion for increased prospective risk was found within the medial frontal
cortex, anterior and posterior cingulate cortex, right striatum, frontal
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Table 1
Prospective mixed gambles results.

Odds Ratio 95% CI p

Prospective effort mixed gambles Effort 0.32 [0.30, 0.35] <0.001
Gain 3.62 [3.35, 3.90] <0.001
Loss 0.56 [0.52, 0.60] <0.001

Prospective risk mixed gambles Risk 0.11 [0.10, 0.12] <0.001
Gain 3.27 [3.00, 3.57] <0.001
Loss 0.51 [0.48, 0.55] <0.001

Fig. 3. Parametric activation and deactivation related to magnitude of pro-
spective effort (A), potential gain (B), and loss (C), in effort-based mixed gamble
stimuli. Parametric activation and deactivation related to magnitude of pro-
spective risk (D), and gain (E), in risk-based mixed gamble stimuli. Statistical
maps corrected for multiple comparisons using Gaussian Random Field Theory
at whole-brain level p < 0.05..

Fig. 2. Behavioral results: Increasing effort levels reduced performance success rate during training and confidence success rate during post-task survey (A). Group
normalized median reaction times related to distance from indifference reflected in mean gamble acceptance rates in effort (red) and risk (blue) tasks (B). Heat maps
depict preferences by level of prospective effort (C) and risk (D). For illustration, gain and loss were collapsed into 3 levels each. Error bars indicate S.E.M.
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polar cortex and right sensorimotor cortex (Fig. 3D). In both the effort
and risk tasks, increasing prospective gain corresponded with increased
activity in the right sensorimotor cortex, SMA, dorsal and posterior ACC
and visual areas. In the effort task, increased activation for increasing
prospective gains was also found within the ventral striatum, right hip-
pocampus, ACC and ventral prefrontal regions (OFC, vmPFC Fig. 3B,E).
In both effort and risk tasks, there were no decreased activations for
increasing prospective gain. Under prospective effort, increased activa-
tions for increasing prospective loss were found in right dlPFC and lateral
frontal polar cortex, left primary motor cortex, left posterior parietal
cortex and medial premotor areas, and there were no decreased activa-
tions for increasing prospective loss (Fig. 3C). No activations were found
for prospective loss under risk. See supplementary material Table 1, for
MNI coordinates of fMRI results.

3.2.2. Whole-brain subjective value prediction analyses
A parallel set of parametric analyses (GLM3, GLM4) identified brain

regions where activation tracked model predictions of the probability of
accepting each gamble. In contrast to the parametric analyses that
considered the fixed magnitude of mixed gamble components, these
analyses relied upon each participant's choice behavior to generate in-
dividual estimates of subjective value for each trial. These analyses
450



Fig. 4. Parametric activation and deactivation related to estimates of subjective value from the effort (A), and risk (B) tasks. Statistical maps corrected for multiple
comparisons at whole-brain gaussian random field theory level p < 0.05..
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revealed shared and distinct contributions of regions for valuation under
each prospective cost. The right VS, vmPFC and right sensorimotor cortex
tracked value estimates under both prospective costs. Under prospective
effort, activity within left dlPFC, right insula and right putamen tracked
value estimates (Fig. 4A). Under prospective risk, right lPFC, and bilat-
eral caudate tracked value estimates (Fig. 4B; See supplementary mate-
rial Table 1 for MNI coordinates of fMRI results, and Figs. 1–4 for
overlapping maps for each comparison between the different contrasts of
interest in the different GLMs). We found significant joint activity within
occipital cortex of decreasing activity for increasing prospective effort
and risk in the conjunction-null test for overlapping activity of prospec-
tive effort and risk. We did not find any significant differences between
prospective effort and risk in the paired t-test (see supplementary
Figure 5).

4. Discussion

We examined the neural basis of effort-based valuation isolated from
production demands and outcome resolution. We adapted a prospective
mixed gambles choice paradigm to present participants with mixed
gambles associated with familiar effort challenges or fixed risk prospects.
Participants' choice behavior and confidence ratings separately reflected
the imposition of a graded cost upon rewards associated with effort or
risk, an observation consistent with many previous effort-based studies
(Salamone et al., 2018; Walton et al., 2006). Our neuroimaging analyses
focused on the time of choice to reveal activation related to prospective
effort or risk cost and participants' choice behavior. We found a modu-
lation of vmPFC and left sensory cortex at choice by prospective effort
magnitude. It has been suggested that vmPFC functions as a global
comparator of multimodal valuation (Gl€ascher et al., 2009; Lebreton
et al., 2009; Levy and Glimcher, 2012), and several studies reported links
between vmPFC activation and effort-based preferences (Basten et al.,
2010; Kroemer et al., 2014; Treadway et al., 2012). Activity in primary
sensory cortex has been reported to reflect the magnitude of effort de-
mand (Keisker et al., 2009; Schmidt et al., 2012) as well as degree
implied physical effort in read descriptions (Moody and Gennari, 2010).
Economic theories of decision-making models often describe valuation as
a cognitive process where options' properties are compared independent
of the sensorimotor contingencies (e.g., Padoa-Schioppa, 2011). In
contrast, embodied cognition frameworks maintain that motor and sen-
sory inputs are integral components of value representations (Kiefer and
Pulvermüller, 2012). Our findings support this interpretation of
effort-cost representation as early as the relevant effector sensory cortex
(hand area in our task), which in turn putatively relays the information
for higher level integration in the vmPFC.

The present findings do not align with related literature that empha-
sizes the role of the ACC and VS in effort-based valuation processes
(Bonnelle et al., 2016; Klein-Flugge et al., 2016; Pr�evost et al., 2010;
Rudebeck et al., 2006; Skvortsova et al., 2014). Our results support recent
neurophysiological findings that suggested that the contribution of ACC
relates to anticipation or invigoration to effort demands, that are absent in
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a prospective task (Cowen et al., 2012; Holec et al., 2014). Critical reviews
and reports put into question the link of dopamine-related activity within
VS to effort and reward expectations (McGinty et al., 2013; Salamone and
Correa, 2012), and reframe the role of ACC in valuation as control based
(Shenhav et al., 2013). Likewise, related evidence suggests that ACC
activation during foraging decisions reflect inferences of choice difficulty,
not value (Shenhav et al., 2014). Bonnelle et al. (2016), found that
decreased structural and functional connectivity between ACC and SMA
were associated with increased behavioral apathy, supporting the role of
ACC in action preparation and initiation. A recent study found that while
ACC did not correspond to the magnitude of required effort, the dACC
together with the anterior insula reflected subjective value prediction
error. This suggests that ACC indeed might be involved in expectation
rather than effort cost encoding (Arulpragasam et al., 2018). Furthermore,
this interpretation is supported by similar neuroimaging studies that did
not find significant evidence for ACC modulation by effort cost in pro-
spective effort choice (Bernacer et al., 2016) and voluntary effort-based
choices, either physical (Kurniawan et al., 2013) or cognitive (Schouppe
et al., 2014). Interestingly, a study that examined the brain correlates of
cognitive effort discounting found that only nucleus accumbens activity
represented effort demand but that preceding activation in the dorsal
anterior cingulate cortex correlated with nucleus accumbens activity
(Botvinick et al., 2009). Therefore, we expect that separating cognitive
effort valuation from effort production will enable dissociation of ACC and
VS contributions to cognitive effort based decisions in a similar way, as in
our study.

We found that VS activity corresponded to both prospective gain as
well as to the subjective value of the mixed effort and risk gambles.
Studies have emphasized a critical role for mesolimbic dopamine as
component of the forebrain circuitry regulating effort-related processes
(for review see: Salamone et al., 2016, 2007). Findings from human
studies provide further support for the role of VS in effort-based de-
cisions. A PET study found that individual differences in left striatal
dopamine were correlated with the willingness to expend greater effort
for larger rewards, especially when reward probability was low (Tread-
way et al., 2012). Several fMRI studies found an involvement of VS in
representing the cost of physical effort (Croxson et al., 2009; Kurniawan
et al., 2013) as well as mental effort (Botvinick et al., 2009; Schmidt
et al., 2012; Schouppe et al., 2014). Our findings align with evidence for a
key role of VS in the representation of integrated cost-benefit valuation.

In addition to identifying regions that tracked effort cost, the goal of
our analyses was to relate neural activation at choice to participants'
behavior. We used subjective responses to individually predict the
probability of accepting each prospective mixed gamble as an estimate of
its subjective value. Notably, the definition of the subjective value of
effort remains under debate. Some studies indicate that a sigmoidal
shape can best describe effort discounting (Klein-Flugge et al., 2016;
Massar et al., 2018; although see: Hartmann et al., 2013) and several
studies of effort-based decisions have implemented an accept/reject
approach to evaluate what they refer to as subjective value of effort cost
(Bonnelle et al., 2016, 2015; Chong et al., 2015). Acceptance rate is also
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commonly used in value-based decision paradigms to evaluate subjective
value (Tom et al., 2007). Here, the main aim of the predicted-choice
analysis was to account for the integrated valuation of all three compo-
nents (i.e., effort or risk, gain and loss) together in one regressor to
represent the subjective value of the mixed gamble offer as a whole. We
found that activation of vmPFC and VS as well as visual and motor re-
gions tracked subjective value estimates during choices under both
prospective effort and risk. Notably, clusters encompassing insula, pu-
tamen and dorsal premotor regions were related to subjective value es-
timates under prospective effort, whereas prospective risk-based
estimates related predominantly to activation of bilateral caudate and
right lPFC. These findings accord with evidence that vmPFC and VS
comprise a core network for the computation of value during choice
while ACC, premotor areas and insular cortex encode arousal or salience
(Bartra et al., 2013; Rangel and Clithero, 2013). Similar to other studies
of effort-based decisions (Burke et al., 2013; Mathar et al., 2016), our
design included an effort task where the participants did not reach the
target goal in all of the effort trials. We accounted for this uncertainty
component (probability of not making the goal) in our model, yet we
acknowledge that future designs should separate between these
components.

In the conjunction analysis, we only found significant joint activity
within occipital cortex of decreasing activity for increasing prospective
effort and risk. In addition, we did not find any significant differences
between prospective effort and risk in the paired t-test. We attribute this
to the slight differences in location of significant clusters between the
separate tasks group results. For example, while we found significant
overlapping clusters within sensorimotor cortex for both effort and risk,
effort related activity was limited to the postcentral gyrus with a slightly
lateral and inferior location. In addition, the whole brain conjunction-
null test correction for these analyses might have been overly strict for
detecting overlapping activity of the two tasks. Future studies would
have to directly address this question in order to clarify to what degree
these overlapping brain areas are involved in both types of decision costs.

Several studies have targeted areas within the effort valuation
network to treat motivational impairments. Deep transcranial magnetic
stimulation of the prefrontal cortex was found to improve apathy
symptoms in major depression patients (Levkovitz et al., 2011). Another
set of studies demonstrated that dopaminergic therapy improved apathy
symptoms of Parkinson's disease (Chong et al., 2015) and basal ganglia
focal lesions (Adam et al., 2013). Given the great societal cost of mal-
adaptive sensitivity to effort and its role in common impairments to
motivated behavior, further understanding of the neural basis of
effort-based valuation offers great promise to inform the next generation
of behavioral and neurological treatments.

In summary, our results demonstrate the validity of the prospective
effort paradigm and refine the association of several brain regions to the
process of effort-based valuation that is independent of production.
Notably, we provide evidence to support the notion that a common
network represents value discounted by effort cost at choice as in other
costs such as risk and delay (Kable and Glimcher, 2007; Peters and
Buchel, 2009; Tom et al., 2007). While extensive literature supports a
crucial role for ACC in effort-based valuation, our results suggest its
contribution may be constrained to invigoration or anticipation of up-
coming effort production.
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