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Key points

• Define replication and replicability
• Discuss the replication crisis and its effect on neuroscience research
• Discuss how a replication study’s success is assessed
• Present causes for failed replications, and demonstrate how some of them can be mitigated
• Present novel initiatives and future directions in the field
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Glossary
fMRI Functional Magnetic Resonance Imaging (fMRI) is a functional neuroimaging technique measuring changes associated
with changes in blood flow in the brain and specifically blood-oxygenation levels. These changes are considered to be coupled
with neural activity patterns. In fMRI studies, subjects usually perform a task while MR images are continuously acquired with
the whole brain often acquired during 2 s. Then, the time-series data is analyzed, usually with relation to a task participants
performed during the scan to produce activation maps. Those maps depict the probability that a certain region of the brain was
activated during a task. There is also a common fMRI scanned called resting state, whereby participants do not perform a task
EEG Electroencephalography (EEG) is a neuroimaging technique for recording electrical activity on the scalp. Small metal discs
(electrodes) capture the macroscopic activity of the surface layer of the brain. This electrical activity is a summation of
postsynaptic potentials of large groups of neurons that fire continuously. In EEG studies, these signals are continuously
recorded, creating EEG waveforms. Then, these waveforms are averaged with respect to an event of interest, to produce event-
related potentials (ERPs): activities that are temporally related to an event in the experiment
MEGMagnetoencephalography (MEG) is a functional neuroimaging technique mapping neural activity by recording magnetic
fields produced by electrical currents occurring naturally in the brain using sensitive magnetometers. Similar to EEG, MEG data
provides a high temporal resolution that allows the assignment of neural activity to specific events. MEEG refers to both EEG
and MEG
Sample size The number of observations collected in an experiment. Usually, the sample size is the number of participants
who took part in the study
NHST Null Hypothesis Significance Testing (also referred to as the “frequentist approach”) is a statistical inference method
testing whether, given experimental data, the “null hypothesis” can be rejected. A research hypothesis usually assumes
a relationship between two or more variables (e.g., height and weight). The null hypothesis is then formulated as the
assumption that no such relationship exists. In the NHST framework, the hypotheses are tested while knowing the distribution
of the test statistic under the null hypothesis. The test then asks whether the observed data is likely to be derived from the null
distribution. If the observed data is extreme enough, then the null hypothesis can be rejected. The “extremeness” of the test
statistic is reflected by the probability value (“p-value”), which measures how likely the test statistic is, under the assumption of
the null hypothesis. When the p-value of a statistic is small (below some threshold, usually 0.05), it is considered unlikely, and
the null hypothesis is rejected
Effect size In the NHST framework, an effect size is a standardized measure of the strength of the relationship between variables
of interest, or the magnitude of the difference between groups
Statistical power In the NHST framework, the statistical power of a null-hypothesis test is the probability of rejecting the null
hypothesis when the null hypothesis is indeed false. Meaning, the statistical power of a test is the probability to correctly reject
the null hypothesis (“true positive”). The statistical power is complementary to the probability of a type-II error (the
probability of not rejecting the null hypothesis when the null hypothesis is false; a “false negative”). Together they sum up to
one.A study can be considered as lacking statistical power (or, “underpowered”). This means that the combination of the study
design and the chosen statistical test have a low probability of detecting a true effect of a certain size of interest. Thus, in
underpowered studies, the probability of making a type-II error is high. Furthermore, Button et al. (2013) have shown that the
probability of making a type-I error (a “false positive”) in underpowered studies increases as well. Meaning, in studies lacking
statistical power, the probability of wrongfully rejecting the null hypothesis (when the null hypothesis is true) is also increased.
Power analysis An analysis method used to calculate the minimum sample size required to detect an effect of a given size. For
a given level of statistical power (e.g., 80%), a statistical test (e.g., a student’s t-test), and a p-value (e.g., 0.05), a power analysis
provides the number of observations that the experimenter needs to collect
Replication The process of repeating a study with new observations
Replicability The ability of a study to produce similar results when it is executed on a new sample of participants
Reproducibility The ability of a study to reach the same results when performing the original study’s analysis on the original
data
Robustness The ability of a study to produce similar results upon reanalysis of the study’s data using different methods
Generalizability The ability of a study to produce similar results when it is executed on a new sample of participants and data
analysis methods are (somewhat) different from the ones originally used

Abstract

Most scientific studies are aimed to test different hypotheses, deepen our understanding of various phenomena, provide
information about a specific process, or uncover the works of some mechanism. Eventually, the results of a research
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experiment are aimed at equipping us with knowledge about ourselves and the world around us. Some of the factors that
affect the results originate from the underlying research question, while others are related to researchers’ specific choices when
performing the study. To discover whether the results obtained in an experiment are reproducible, scientists should perform
a replication study. Replication is the act of performing a study on a new sample to test whether the original scientific findings
are recreated. In recent years, the importance of replications has been emphasized across fields, from social sciences to cancer
biology. In this article, we review how replications are defined, executed, and evaluated. This highlights the complexities
researchers face when performing and assessing the success of replication attempts. We discuss what affects a study’s repli-
cability and highlight progress made in brain research following the appreciation of replications’ contribution to the field.

Introduction

Most scientific studies test a hypothesis the researchers have about the value of a single parameter, or the relationship between
multiple parameters. For example, in neuroscience, one might examine the relationship between a negative emotional response
to a stimulus and the neural activity in a specific area of the brain associated with it. Thus, researchers design and develop exper-
iments to test their hypotheses, usually on a group of participants. Then, the researchers analyze the study’s results using various
statistical methods to evaluate whether the collected data can provide information about the hypothesis. Based on the analysis,
the researchers reach a conclusion about the relationship they tested. However, this conclusion is derived from a single experiment,
performed once on a limited group of participants. The question that comes up is, are the results from this study reliable?

Replication is the process of assessing a study’s reliability by repeating it with a different sample of collected data. The replica-
bility of an experiment is the ability to achieve similar results and reach similar conclusions when conducting it again with different
participants. Intuitively, if the results are reliable, repeating the experiment’s design and analyses on a new sample of participants
should yield consistent results. Thus, replicability is a crucial feature of a scientific study, especially when examining the brain and
behavior. Conclusions derived from neuroscience studies affect not only our understanding of the brain, but also have a great
impact on daily life: from policymaking (e.g., COVID-19 recommendations: Van Bavel et al., 2020), to clinical diagnosis (e.g.,
an EEG-based index for assessing consciousness in unresponsive patients: Casali et al., 2013), and mental health treatments
(e.g., video-based clinical treatments: Matheson et al., 2020). These tools rely on the premise that the research findings establishing
their usefulness are replicable. However, until recently, replication has not been at the forefront of research as novelty of results was
highlighted as the goal of many studies. In this article, we overview the replication crisis and review the progress made in neuro-
science toward increasing replicability.

What is replication?

Replication has many definitions, stemming from different scientific eras and disciplines (for a review of different definitions in
psychological sciences, see Schmidt, 2009). Lykken (1968) recognized the importance of replicability in the social, clinical, and
personality research domains. In psychology research, the effects in question often involve complex relationships with latent vari-
ables that are hard to separate from noise. Therefore, the effects that researchers aim to test for in such experiments might stem from
factors other than the actual relationship of interest. Thus, a single experiment cannot be considered to provide enough evidence for
the examined theory. In order to test a theory’s predictions against the possibility that the theory is false (Popper, 1959), Lykken
suggested that “demonstrating an empirical fact must involve a claim of confidence in the replicability of one’s findings”. Conse-
quently, he defined several types of replications: A literal replication involves an exact repetition of the sampling methods, experi-
mental conditions, measuring techniques and analysis methods used in the original study, done by the same research group. An
operational replication is one where a different group duplicates the original study (repeating the original procedures from the original
report, also known as the material realization: Radder, 1992). A constructive replication (also known as conceptual replication) attempts
to replicate the original findings while deliberately using a different procedure. The conclusions of a specific study cannot be gener-
alized without constructive replications, demonstrating that the construct (phenomenon) of interest can be derived even with new
procedures and collected data. While constructive replications test a study’s generalizability, an operational replication tests whether
the original findings can be duplicated when the methods are the same.

At their core, different attempts to define “replication” all agree on the simple notion of assessing a study’s reliability: repeating
an experiment should lead to the same results (National Academies of Sciences Engineering and Medicine, 2019). Notably, repli-
cation and replicability are often confused with similar terms, which have different meanings and implications. First, reproducibility
describes achieving the same results when the original analysis is performed on the original data without collecting new observa-
tions (Nosek et al., 2022). Second, robustness is achieved when the original dataset is analyzed differently, and the same conclu-
sions are reached (Nosek et al., 2022). Finally, generalizability is the combination of robustness and replicability: when the original
results are achieved with a different dataset (replicability) and using different analysis pipelines (robustness), they are generalizable
(Nosek et al., 2022).

Thus, replication is the process of repeating a study with a newly collected sample, and replicability is the ability to achieve the
same results as the original study (Goodman et al., 2016). A replication study aims to estimate the replicability, or reliability, of the
original experiment.
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The replication crisis

In 2005, a provocative paper in genetics research, titled “Whymost published research findings are false”, was published (Ioannidis,
2005). Addressing a trend of failure to replicate previous findings, Ioannidis made a conceptual statistical argument for why most
published experiments reporting positive results are false (the statistical assumptions made by Ioannidis were criticized by
Goodman and Greenland (2007)). By “false”, he meant that the relationship found in the study (reported based on its statistical
significance) does not truly exist. As such, previously published findings of significant relationships could be, in fact, “false posi-
tives” (also known as type-I errors or false alarms).

Based on this logic, Ioannidis concluded that the following conditions increase the likelihood that a study’s result is false (and
so, would fail to replicate): a small sample size (i.e., too few subjects or observations in the collected data), a small effect size (i.e.,
a weak relationship found between two or more variables), a large number of tested relationships in the scientific field (i.e., more
exploratory than confirmatory experiments), flexibility in the methods of the scientific field (i.e., a lack of standardization in study
designs, definitions, analysis steps, etc.), conflicts of interest (i.e., a financial or other interest that might bias the research), and
incentives to make extreme claims (due to the competitive need to publish papers with novel results).

Yet the pitfalls Ioannidis deduced when making his statistical argument have been known for decades. For example, Tversky and
Kahneman (1971) explained that a small sample size is underpowered, contributing to a failure to reject the null hypothesis
assuming that the research hypothesis is true (known as a type-II error or a false negative result). They explicitly warned that this
could lead to failure to replicate research findings and recommended calculating the power of an experiment before it was per-
formed. Relatedly, though not directly addressing Ioannidis’ point, Cohen (1962) years earlier, recommended increasing the sample
size to increase the statistical power of experiments. Using power analysis, he demonstrated the large impact that statistical power
has on finding a significant effect size. An effect of miniature magnitude, even when statistically significant, means that the strength
of the tested relationship (or the difference between the groups of interest) is “trivially small” (Cohen, 1990). He also warned
against taking a test’s statistical significance as a proxy of effect size.

Despite these warnings, statistical significance has in fact become an essential requirement for findings to be published in scien-
tific journals. This too has been recognized as a problem: Sterling (1959) described how journals restrict publications to statistically
significant results while many insignificant results are never published. He then deduced that type-I errors (false positives), rather
than actual effects, might drive a massive part of the literature in various scientific disciplines. Twenty years later, Rosenthal (1979)
revisited the issue, which from that point on has been known as the “file drawer problem”: when publications that do not reach
significance are not published and are “left in the drawer”. Thus, “positive results” (statistically significant ones) have become a desir-
able goal for researchers, as they were necessary for the results to be reported and published.

Despite the fact that scientists having recognized these issues long ago, the rate of underpowered studies with small effect sizes
and a small number of subjects remained consistent (e.g., Smaldino and McElreath, 2016). In addition, replication studies have
rarely been carried out (e.g., the replication rate in psychology was estimated to be only 1.07%, according to Makel et al.,
2012). Moreover, scientific journals refrained from publishing such studies, or those reporting negative (i.e., insignificant) results
(e.g., Aldhous, 2011). Thus, Ioannidis’ work exposed a cross-disciplinary gap between theoretical knowledge and scientific practice:
the causes for unreliable published works were known, but researchers barely addressed them and did not have any incentives to do
otherwise.

The publication by Ioannidis and other works (as reviewed by Nelson et al., 2018) catalyzed many replication efforts across
different fields (e.g., computation: Donoho et al., 2008; psychology: Open Science Collaboration, 2012; cancer biology: Errington
et al., 2014), in what would be coined as “the replication crisis”: one report after another, canonical results in various disciplines
failed to replicate. First, only 36% effects in psychology experiments were replicated (Open Science Collaboration, 2015), then
a major reduction in effect sizes in cancer biology (Errington et al., 2021), and 61% in behavioral economics (Camerer et al.,
2016). The newly developed interest in replication raised the question: What makes replications fail?

Causes for failed replication

Intuitively, a replication attempt should be simple: mimic the steps taken in the original study, collect a new sample and test
whether similar results are achieved (assuming enough details were provided about the original studies’ methods). If so, then
the confidence in the reliability of the phenomenon increases. If the replication attempt failed, one might conclude that the original
findings could have been erroneous. However, this might not be accurate, as many factors affect a study’s replicability. Below we
provide an overview of these factors.

Deviation from the original study
A direct replication (Nosek and Errington, 2017; Zwaan et al., 2018) is a study that recreates all the “relevant” settings of the original
experiment. While in Lykken’s definition of an operational replication the entire study is duplicated, a direct replication only
considers the settings that are relevant. Nevertheless, the decision of what is relevant depends on factors such as the researchers’
priorities and the availability of the information about the original study (see “insufficient reporting” below). Thus, when a study’s
findings fail to replicate, it may as well be due to the replication experiment failing to fulfill an essential requirement of the original
study. Though it may point out issues in the hypothesis’ generalizability, the initial results’ reliability is not truly assessed when
deviating from the original study. For example, the facial feedback hypothesis in social psychology proposes that one’s emotion
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is affected by facial expression (“pen-in-mouth” effect; Strack et al., 1988). A large collaboration across 17 labs performed a direct
replication and failed to reproduce the effect (Wagenmakers et al., 2016). However, the replication study’s setup included a video
camera that recorded participants. This was not included in the original setup, and might have interfered with participants’
emotional behavior (Strack, 2016). A recent adversarial collaboration tested several types of manipulations across multiple designs
and found that facial feedback (though not specifically the pen-in-mouth manipulation) can increase and even generate the feeling
of happiness (Coles et al., 2022). Thus, the relevance of some settings to the effect in question might become evident only after
a failed replication attempt.

Null-hypothesis significance testing (NHST)
Neuroscience and psychological statistical analyses are often based on null hypothesis significance testing. In this statistical infer-
ence process, a value of a sample statistic derived from the experimental data falls somewhere within a distribution of values, created
based on the null hypothesis (according to which there is no significant relationship between the parameters of interest). Suppose
the sample statistic is extreme enough (with the size of the extreme region pre-determined by the researcher): in this case, the null
hypothesis is rejected, and the test result is deemed significant. Otherwise, the null hypothesis cannot be rejected. This popular infer-
ence process typically leads researchers to examine studies dichotomously: was the null hypothesis rejected? Often, rejection of the
null hypothesis (due to a statistically significant sample statistic) is interpreted as evidence supporting the alternative hypothesis
(e.g., “a relationship was found”, or “the relationship was replicated”).

However, rejection of the null hypothesis does not necessarily provide support for the alternative hypothesis. Criticisms of this
inference process have been raised for decades; as Rozeboom (1960) put it, “a hypothesis is not something, like a piece of pie
offered for dessert, which can be accepted or rejected”. NHST’s common use and binary interpretation ignore the hypothesis testing
as a degree of belief (or disbelief) in the hypothesis, with confidence in either position strengthening based on experimental
evidence. Instead, the conventional use of the NHST framework wrongfully reduces the inference process into a simple binary
test. A small difference in the test statistic can turn a negative result into a positive one (i.e., rejection of the null), with the turning
point being completely arbitrary (usually, a p-value of 0.05; Rozeboom, 1960), while ignoring the full context of the NHST frame-
work and its shortcomings (Szucs and Ioannidis, 2017). Colquhoun (2014) used simulated t-tests to demonstrate that using NHST
with a criterion of p-value being 0.05 leads to a 30% false alarm rate (notably, on its own, a single test with p-value of 0.05 will have
a 5% false alarm rate, assuming all assumptions are met). Thus, the reliance of common neuroscientific analysis methods on NHST
contributes to replication failures.

An additional issue with the frequentist approach is that when multiple comparisons are made, the chances of receiving a signif-
icant effect increases. This issue is highly concerning in neuroimaging data analysis. In brain imaging, hypothesis tests are done
simultaneously over many data points, to examine which of them are significant. For example, in fMRI, neural data are recorded
and transformed into a series of three-dimensional brain images. Each such image is segmented into voxels (three-dimensional
pixels), such that the image is divided into hundreds of thousands of voxels. Hundreds of such images are acquired (and segmented
into voxels) during an experiment. Then, when researchers aim to test which areas of the brain are activated during the task, they
perform a statistical test for each to examine whether the activity is significant. Thus, multiple hypothesis tests are performed, each of
them with a criterion of 5% type-I error (i.e., a p-value of 0.05). As Lindquist and Mejia demonstrate (2015), for every 100,000 tests
performed with a p-value threshold of 0.05, 5000 type-I errors will be observed. A similar issue arises in EEG studies, where
hundreds of scalp electrodes record thousands of times per second. A point-by-point analysis of the electrical activity in these elec-
trodes over time results in a similar multiple comparisons issue. Notably, the multiple comparisons issue is not unique to imaging;
when a study performsmultiple statistical tests to compare groups or recognize a relationship, the probability of finding a significant
effect due to sampling error increases. Thus, whenever multiple statistical tests are performed simultaneously, the multiple compar-
isons issue arises. In the next section (“Increasing Replicability”), we will discuss how the multiple comparisons issue is addressed
and corrected.

Questionable research practices (QRPs)
Despite the critique of the NHST framework, neuroscience and psychological studies still widely adopt this framework with
a threshold of p � 0.05 for rejecting the null hypothesis. The 5% false-positive rate threshold (when correcting for multiple
comparisons) is expected to minimize type-I errors. Yet, even with this strict limit, questionable research practices (QRPs; National
Academy of Sciences, 1992) make it very easy to report a statistically significant result that is false. These behaviors derive from the
researchers’ degrees of freedom when performing an experiment and are characterized by a trial-and-error behavior where different
analyses are conducted until a significant result is reached (also termed “fishing expeditions” or “p-hacking”, Gelman and Loken,
2013). Notably, the underlying assumption is that, unlike deliberate misconduct behaviors, QRPs are performed without dishonest
intention. These practices might stem from old habits, reliance on old literature, biases that researchers have due to being incentiv-
ized based on the publication of statistically significant results, lack of knowledge, or ill-defined research hypotheses.

Choice of sample size
Two problematic practices with respect to sample size can lead to false results. First, when not defining the sample size of one’s
experiment in advance, a researcher can perform an interim analysis of the data and see if the result is significant. When testing
the hypothesis on the collected sample, the researcher can decide to continue collecting data, until a significant result is obtained.
As Simmons et al. (2011) have shown in a simulation study, the practice of stopping data collection when significance is reached
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can easily lead to inflated false-positive rates, especially in small sample sizes. Second, under the NHST framework, small sample
sizes contribute to underpowered study designs (Simmons et al., 2011), which increases the probability that any significant effect is
a type-I error (Button et al., 2013).

Hypothesizing after the results are known (HARKing; Kerr, 1998)
A confirmatory scientific study is driven by hypotheses, which are operationalized and tested in an experiment. Once the data is
collected, the a priori hypotheses according to which the study was designed can be tested. HARKing is a sub-cluster of QRPs in
which hypotheses are tested, reported, or omitted after the results of the study are already known. Murphy and Aguinis (2019)
recognized four types of HARKing: hypothesis proliferation, THARKing (transparent HARKing), cherry-picking, and question
trolling.

• Hypothesis proliferation is a case in which the researcher tests hypotheses that were not originally planned. The data itself might
expose interesting trends and even inspire the generation of additional research questions. However, as not originally included
in the research plan, these post-hoc hypotheses should be reported as such. Presenting a newly observed result as if it confirms
a pre-existing hypothesis yields type-I errors, because “testing” a hypothesis on the data that generated the hypothesis to begin
with (“double-dipping”) invalidates the statistics (Wagenmakers et al., 2012). Thus, reporting post-hoc hypotheses as if they
were a priori hypotheses is a form of HARKing, leading to a failure to replicate the original result.

• THARKing occurs when researchers form novel hypotheses in the discussion section of the paper, based on the study’s results -
for example, presenting a hypothesis that was contradicted by the data as a “competing hypothesis”. This can lead to overfitting
of the data and impedes a theory’s potential for predictive precision (Hitchcock and Sober, 2004). A novel hypothesis based on
data that were collected with the goal of testing a different hypothesis, was never truly tested. Thus, a replication attempt of such
a hypothesis may fail to demonstrate the same trend.

• Cherry-picking is the act of reporting only the measures that were found to have a significant effect, when in fact, other
dependent measures were collected as well. Retroactively dropping experimental tests which did not yield significant results
increases studies’ false-positive rate (Simmons et al., 2011). Cherry-picking is also related to the multiple comparisons problem:
when reporting only a subset of multiple statistical significance tests that were made without correcting for multiple compar-
isons, the probability of type-I errors increases.

• Question trolling is another form of exploratory analysis, in which researchers sift through existing data without a clear
hypothesis to find results that might be of interest. This is a data-driven approach but reported as confirming a hypothesis. Thus,
it distorts the scientific process and biases the scientific literature as the problem of “double-dipping” once again increases the
probability of a type-I error rate. This exploratory method can be acceptable, as long as it is reported and interpreted as such.
When “massaging” the data to find an interesting result and formulate a hypothesis, it can no longer be used to test the
hypothesis it just helped to formulate.

Thus, a replication of a finding that was achieved by HARKing can fail to reach similar conclusions as the original study, as those
conclusions were tailored to the originally collected data.

Data analysis choices
If not pre-defining how exactly each hypothesis will be tested, researchers might “fish” for statistical tests that yield the desired
results (“p-value fishing”, Neuroskeptic, 2012; or “data massaging”, Wagenmakers et al., 2012). One might think that executing
many different tests until one yields a significant result is a sign of a thorough procedure of “truth-seeking”. However, reporting
an exploratory study as a confirmatory test of a hypothesis is a QRP. Presenting an exploratory result as a confirmatory test using
a selected method leads to type-I errors (Wagenmakers et al., 2012). Thus, the result of an exploratory analysis (presented as con-
firming a hypothesis) can fail to replicate.

Outlier exclusion
If not pre-defining which observations need to be excluded from the study, researchers have the freedom to create an exclusion
threshold based on their collected observations. This allows researchers to discard data that, once viewing the results, might
seem to “ruin” the expected result. This creates a lack of standardization in the field andmakes findings hard to interpret considering
the different criteria between studies. In addition, post-hoc decisions regarding outlier exclusion affect the significance of the result,
which leads to an increase in false-positive findings (John et al., 2012), especially when researchers exclude data based on its impact
on analysis results. Without a clear justification for excluding samples ahead of time, replication attempts can fail to find the original
effect (that might as well have been a type-I error).

Errors
Errors can occur at any stage of the experimental process: from the study design to the experiment’s execution, analysis pipelines,
and statistical testing and interpretation. For example, given the NHST framework, a neuroscience meta-analysis showed that about
50% of the examined studies did not perform the correct statistical analysis required to actually test a difference between two groups
(by performing subgroup analysis without interaction tests, Nieuwenhuis et al., 2011). Another famous example is the dead salmon
experiment, performed by Bennett et al. (2009) to demonstrate the importance of correcting for multiple comparisons. In this fMRI
study, the group found significant activations in the brain of a dead salmon. Thus, incorrect analysis of the data can lead to false-
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positive findings. Although the need for correcting for multiple comparisons was known in the field, this well-known study
promoted it even further. Thus, failed replication attempts can reveal statistical analysis biases and mistakes. For example, a study
demonstrating the effects of perceptual load on the human visual cortex was retracted after a graduate student failed to replicate it
and managed to attribute the original finding to unintentionally biased analysis methods (de Haas et al., 2014).

Errors can also occur during the implementation of the study. Experiments are heavily based on computer software: from the
software used to run the study, to the code used to process and analyze the data, researchers rely on a mixture of software products
to execute their experiments and extract results. Inevitably, these programs might have errors in them, which can lead both to erro-
neous conclusions that cannot be replicated, and to failed replications where a mistake hindered the inference process. For example,
Eklund et al. (2016) revealed that even prominent software packages used for fMRI data analysis contained flaws that lead to an
increase in false-positive rates. When software packages that researchers use contain flaws, it is not surprising that an in-house soft-
ware that single researchers develop has errors. Indeed, coding errors do happen, and unfortunately, when found only after publi-
cation, they might lead to retraction of the published work (Dolk et al., 2019).

File drawer effect
The file drawer effect still exists, as high-impact journals continue to publish positive findings (results that are considered statistically
significant under the NHST framework) rather than null results or replication attempts. Researchers’ performance and skills are often
assessed based on the volume of their published studies. As such, scientists are pressured to increase their number of publications,
which in turn decreases their quality. In addition, as null results are often not accepted for publication, researchers hardly ever try to
publish them (Smaldino and McElreath, 2016). This means that the published literature represents a skewed, partial sample out of
all studies conducted in the field. Thus, a replication of a finding might fail due to it reflecting a false-positive result being an outlier
out of an unknown amount of failed, unpublished experiments.

Insufficient reporting
Despite having standardized formats of publications in different journals, no uniform standard exists for the level of detail one must
provide in themanuscript itself. Even when journals define basic reporting requirements, they are rarely enforced: for example, Clay-
son et al. (2019) showed that in EEG studies, published papers fulfilled only 63% of their corresponding journals’ reporting guide-
lines. And so, it is not surprising that the vast majority of studies do not contain the sufficient amount of detail required to replicate
them (Errington et al., 2021). Thus, a replication attempt might as well fail because the authors of the original manuscript failed to
provide a transparent account of their experiment.

Deliberate misconduct: fabrication, falsification, and plagiarism (FFP)
FFP are assumed to be the worst research practices that scientists agree should be avoided (Steneck, 2006). Plagiarism does not
directly affect the replication of a study; despite breaking the trust of other colleagues, as long as the reported results are real, the
study can be assumed to be reliable. On the other hand, fabrication and falsification of a study entail presenting false results, which
of course explains a failed replication attempt of the original “study”. This behavior is, of course, unscientific and biases the knowl-
edge aggregated in the literature.

The original result was a type I error
An experiment with a flawless methodology that is reported with full transparency can still fail to replicate, simply because of an
actual type-I error. This might stem from using a small sample size, resulting in low statistical power. Effects found in underpowered
studies are likely to represent a type-I error (Button et al., 2013). Alternatively, type-I errors can simply reflect new directions or novel
methodologies to be explored, especially in less mature research fields. The odds that a study will replicate increase when the effect
in question has already been thoroughly researched (Nosek et al., 2022).

The replicated result is a type II error
In a complimentary manner, a failed replication attempt can reflect a false negative result, also known as a type II error. Of course, if
the replication study itself suffers from small sample sizes or QRPs, it will fail to achieve the previously found results.

Evaluating replication results

What defines a successful replication? Intuitively, after repeating the experiment and the analyses, a replication succeeds if it yields
similar results and allows us to reach similar conclusions. Clearly, we do not expect the results to be identical. If so, in what aspect
should the replication results be similar to the original study for the replication to be considered successful?

Overall, there are two types of approaches for estimating the success of a replication study: a frequentist type, and a Bayesian
type. Under the NHST framework, some might choose to define the replicability of a reported study with respect to the significance
of the finding in the replication attempt, so that a significant effect is considered a successful replication (e.g., Soto, 2019). Yet,
failing to reject the null hypothesis in a replication study is not equivalent to accepting the null hypothesis. In addition, the
approach of comparing the p-values of the original and replication studies is problematic because a difference in significance
between the original and replication p-values does not necessarily indicate that the difference between the studies is significant
(Nieuwenhuis et al., 2011). Bayesian methods allow interpreting the evidence as indicating either a failed or a successful
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replication. In addition, with Bayesian methods, replication results can be interpreted as supporting neither the null hypothesis nor
the alternative, providing insight regarding the information that can be derived from the replication experiment. Still, Bayesian
methods suffer from caveats as well. For example, one can use a default Bayes hypothesis test, which asks whether the original effect
is observed in the replication study data (Dienes, 2011). In this framework, one hypothesis is that the original effect was spurious,
and the alternative hypothesis is that the replication effect is compatible with the one found in the original experiment. The repli-
cation Bayes factor quantifies the change in evidence provided by the replication experiment, given that the evidence provided by
the original study is already available. Yet, when the original study’s p-value supports the alternative hypothesis while the replica-
tion attempt’s Bayesian analysis supports the null hypothesis, it is unclear whether the original finding indeed failed to replicate
(Verhagen and Wagenmakers, 2014). An alternative approach (Verhagen and Wagenmakers, 2014) is to calculate the posterior
distribution based on the original study’s data and use it as a prior for the replication study’s assessment. This framework compares
the null hypothesis (zero effect size) against the hypothesis that the effect derives from the posterior probability distribution of the
original finding. However, generating the posterior distribution from the original study’s data is not a trivial procedure, and it is hard
to implement with statistical designs that include ANOVAs (rather than simpler comparisons). Thus, Ly et al. (2019) suggest calcu-
lating the replication Bayes factor by dividing the complete Bayes factor (based on evidence from both the original and replication
study) by the Bayes factor of the original study.

Effect size
Researchers can assess the replication attempt by comparing the replication’s effect size with the originally reported one, such that
a weaker replicated effect size means the replication has failed (Hagger et al., 2016). This might be problematic in behavioral neuro-
science domains in which effect sizes are generally small, making it difficult to set an effect size below which the hypothesis cannot
be accepted. In addition, an unfeasibly large sample size might be required to replicate small effect sizes such that the replication has
enough statistical power. For example, the “small telescopes approach”, suggested by Simonsohn (2015), measures the detectability
of the finding in question: instead of using the original effect size as the benchmark, a small effect size in this context is defined as
one that would give the original study 33% power (given the sample size of the original study). Then, the replication effect size is
tested against the small effect size, such that if the replication effect is smaller than the small effect size, the replication has failed, and
the studied effect is not large enough to have been detectable with the original sample size (the “original telescope” is “too small”).
Notably, if a replication attempt fails to fail the small telescope test (i.e., the replication’s effect size is not smaller than the pre-
defined small effect), it cannot be interpreted as a successful attempt. This is an example of a caveat of the NHST framework
when comparing studies, that can be solved by taking a Bayesian approach.

Confidence intervals
Are sometimes mistakenly thought to be an approach to test replicability. However, as it is misguided for multiple reasons, it should
be refrained from. The first downside of this approach is that underpowered studies have wide CIs, so the CI comparison can
succeed simply because the original study lacked statistical power. As such, it is hard to test the replicability of the original finding
using this method, as for a replication attempt to fail, the original study needs to be adequately powered. Second, the common
interpretation of CIs (as indicating anything about the true parameter lying within the boundaries) is incorrect (Hoekstra et al.,
2014): The correct interpretation of a 95% CI is that if we were to repeat the experiment, 95% of the CIs we would receive would
have contained the true mean.

A meta-analytic approach for assessing replicability
Examine replication attempts of the same study across labs, such that heterogeneous results imply the original finding is unreliable
(e.g., Hagger et al., 2016). If the heterogeneity is small, this indicates agreement across the studies and can support the original
conclusion (such as in Klein et al., 2018). However, once again, studies with small sample sizes may lead to more heterogeneous
results, making it difficult to deem a replication as a failure.

Notably, there is no convergence on a standardized metric to evaluate replication results. Some researchers claim that there
should be no single standardized method to test the replication results (Anderson and Maxwell, 2016), as different criteria test
different aspects of the replication compared with the original results. Thus, the assessment of a replication attempt can benefit
from using multiple complementary metrics (Marsman et al., 2017).

Increasing replicability

Despite the lack of convergence in measuring replicability, the replication crisis drew attention to causes for replication failures
stemming from substandard research conventions. Awareness of these tendencies has facilitated attempts to improve research prac-
tices, hoping to increase replicability. Below we provide an overview of possible solutions (summarized in Table 1). None of them
guarantees that a finding will replicate; yet, by improving scientific practices, researchers can produce research of high quality that
contributes to scientific knowledge. Then, thorough replication attempts could be executed, to test whether the original findings are
reliable.
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Deviation from the original study

Variations stemming from a lack of knowledge are due to insufficient reporting of the original research. As detailed below, they can
be solved by increasing transparency and sharing the study materials (for example, by using and sharing checklists; Nichols et al.,
2017). Deviations stemming from subjective differences in what researchers define as “relevant” for the scientific question can be
solved in one of two ways: one option is to ensure that a direct replication recreates as much of the original study as possible,
without intentionally leaving out parameters and procedures that seem unimportant. The other option is to perform a conceptual
replication instead of a direct replication. The goal of a conceptual replication is different from a direct one. Conceptual replications
test a hypothesis using different methods, trying to test whether the underlying theory is correct (Nosek and Lakens, 2014). In this
framework, the question is whether a theory is true and can be generalized above and beyond the methods used to test it (Goodman
et al., 2016; Nosek and Errington, 2017).

Null-hypothesis significance testing (NHST)

Methods for controlling type-I errors in the NHST framework have been used to try to refrain from false-positive results that would
fail to replicate. Corrections for multiple comparisons such as Bonferroni (1936), False Discovery Rate (FDR; Benjamini and Hoch-
berg, 1995), and Familywise Error (FWE; Hochberg and Tamhane, 1987) have been implemented, especially in neuroimaging
studies where multiple comparisons are abundant. Yet, even when no multiple comparisons are made, researchers have argued
that the traditional frequentist approach with a p-value threshold of 0.05 is likely to generate type-I errors. Suggestions such as
changing the criterion to 0.005 and even 0.001 have been made (e.g., Johnson, 2013), as well as calls for caution when interpreting
results of significance testing (Colquhoun, 2014; Lakens et al., 2018).

Table 1 Factors contributing to replication failure and suggested improved scientific practices to mitigate them. NHST: Null Hypothesis Significance
Testing; QRPs: Questionable Research Practices; FFPs: Fabrication, Falsification, and Plagiarism.

Contributing factor for replication failure Improving scientific practices

NHST Multiple comparisons - Correct for multiple comparisons (Bonferroni, FWE,
FDR)

Significance interpretations - Consider effect sizes and confidence intervals, interpret
with caution

- Bayesian framework
QRPs Sample size - Determine (and justify) sample size based on power

calculations
- Preregister the size and do not add observations during

data collection
HARKing: hypothesis proliferation
THARKing cherry-picking
Question trolling

- Preregister all the study’s hypotheses
- Plan the experimental design including all conditions

and dependent measures
- Preregister the study design
- Report exploratory analyses as such

Data analysis choices - Define what methods will be used to test each
hypothesis

- Preregister these choices
Outlier exclusion - Decide on outlier exclusion criterion in advance

- Preregister the criterion
Errors Hypothesis errors - Choose the appropriate statistical analyses for the

hypothesis, make sure to know their limitations and
what corrections need to be performed

- Preregister all the methods and pipelines
Implementation errors - Don’t reinvent the wheel; always prefer existing tools

- Test your processing pipelines as thoroughly as you
can

- Be transparent: share all the processing and analyses
codes

File Drawer effect - Registered reports
Insufficient reporting - Be transparent: share all the materials used in the

experiment: experimental software, stimuli, software
- Provide a detailed, comprehensive report of all the

settings and methods used in the study.
FFP - Do your best
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Instead, researchers of a to-be-replicated study can choose to replace the NHST framework altogether and adopt Bayesian statis-
tics when testing predictions. In Bayesian approaches, a prior probability (derived from a theory or previously collected data) and
a likelihood function (derived from a statistical model of the current observed data) are used to create a posterior probabilitydthus,
updating the belief in a certain hypothesis. In addition to their ability to provide support for the null hypothesis (as the null is
a competing model to the research hypothesis), Bayesian methods can also be useful in studies with small sample sizes. The
Bayesian framework can be used instead of the frequentist one in many common statistical neuroscience analyses. For example,
Rouder et al. (2009) suggested using a Bayesian alternative for the t-test, to be able to collect evidence in support of the null hypoth-
esis. In addition, Penny et al. (2005) developed methods to use Bayesian analysis in fMRI experiments. Thus, the NHST approach
can be replaced with a Bayesian approach, to collect evidence for both supporting and opposing hypotheses, and allow explicit
updating the belief in a theory in light of new evidence. Notably, for some analyses the transition is not trivial, and entails compu-
tational and implementation challenges.

Preregistration

Minimizing the prevalence of QRPs requires researchers to carefully think about their study design choices, analysis plans, and pre-
dicted results, and document them. Preregistration (Wagenmakers et al., 2012) allows researchers to document their planned exper-
iments in advance, to make sure the executed study is indeed confirmatory (rather than exploratory). Notably, many of the issues
stemming from QRPs can be partially mitigated by preregistering the relevant parameters, with registries such as OSF (Foster and
Deardorff, 2017) and AsPredicted (Bedics, 2018; see “Relevant Websites”). However, despite being necessary, preregistrations alone
are not sufficient, and further actions are needed:

Well-powered study
A well-powered study requires an adequate number of data points; either collecting data from many subjects or collecting many
observations (e.g., trials) in case the number of participants is small (Smith and Little, 2018). In addition, to prevent waste of
resources (by performing the experiment on more subjects than needed for a well-powered experiment, or on too few subjects
to allow drawing conclusions), it is crucial to define the desired number of observations based on power calculations (e.g., Brys-
baert, 2019) rather than on arbitrary or historical practices (thus it is advised to use tools such as G*Power, and Neuropower;
see “Relevant Websites”).

Hypothesizing after the results are known (HARKing)
The NHST framework is designed for testing predictions, not for hypothesis generation. And so, exploratory studies cannot be
considered as strong evidence supporting a hypothesis. For a study to be confirmatory, researchers must explicitly preregister all
the hypotheses, and all the dependent measures and study conditions. Preregistration of all the study’s hypotheses and dependent
measures creates a distinction between planned and post-hoc results, allowing transparency regarding initial and postdictive
hypotheses (Nosek et al., 2018). Preregistration reduces cherry-picking, as all parameters are listed in advance, and so need to be
reported once the results are analyzed. Any novel hypothesis that was not originally listed and is based on observing the data is
thus treated as exploratory, mitigating both hypothesis proliferation and THARKing. Thus, a detailed and thorough preregistration,
that outlines all the hypotheses and their predictions, is a first step in reducing HARKing.

Data analysis choices
For a study to be confirmatory, researchers should preregister all the analyses and statistical tests ahead of time. As the reader will see
below (“Insufficient Reporting”), once again, “the devil is in the details”, and registering the planned tests alone still leaves many
degrees of freedom to the researchers (both the original authors and the replicators). Yet, without an explicit, preregistered analysis
plan, a study is not confirmatory, and replication cannot be carried out without sufficient information.

Outlier exclusion
To avoid confirmation bias, in which an extreme observation seems like it should be dropped to “make sense” of the analysis, a clear
definition of what makes an observation an outlier should also be decided upon in advance. Notably, preregistration alone does not
solve the standardization problem: without a clear justification for the choice of exclusion thresholds, researchers are free to set their
different criteria based on their own preferences. However, a pre-defined exclusion criterion greatly contributes to the credibility of
a replication attempt of the original study.

Errors

Errors are inevitable. Researchers should work hard attempting to avoid errors but know that, nevertheless, they will occur. Working
with this assumption in mind, researchers should create systems of checks and balances that help them to validate their processes:

Hypothesis errors
Preregistration of the study’s sample size, hypothesis, experimental conditions, and dependent variables does not prevent
researchers from making mistakes such as choosing an unfitting statistical test or not correcting for multiple comparisons.
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Researchers should consult their community to ensure that their hypotheses’ operationalization is correct and that they are using the
right tools to test them. Mistakes can still occur, as no scientific Oracle exists. However, awareness of the possibility of making such
mistakes can help researchers look for potential errors in their own design and drive scientists to plan and execute proper solutions.

Implementation errors
Software-based errors are also prevalent and, in a way, unpreventable (Sharma, 2016). However, large software packages have
higher chances of finding (and then fixing) implementation errors than ad-hoc software programmed by a single researcher, espe-
cially if they are open-source. Open-source software is one that is available for the public to access and modify. When the code is
accessible to everyone, it increases the probability of characterizing and solving software-based errors (Linus’ law: “given enough
eyeballs, all bugs are shallow”). Thus, relying on existing solutions is always better than reinventing the wheel. Another aspect
that is key to airing out mistakes and executing a proper replication is transparency: sharing the codes for the entire processing
and analysis pipeline. By the mere act of opening the codes for general inspection, the community can help in locating and correct-
ing errors, increasing efficiency, and performing better replications based on public materials (Trisovic et al., 2022).

File drawer effect

A solution to the file-drawer effect depends on a paradigm shift in the way scientific journals operate. Below we describe actions
taken by journals in that direction.

Publishing null results
Some journals announced that they encourage publications of null results (e.g., Nature, 2020). Publications of null findings might
reveal unfavorable scientific directions (as opposed to promising ones) or other methodological constraints researchers and funding
agencies should be aware of.

Registered reports
Many journals have adopted the registered report model (Chambers, 2012; Chambers et al., 2014; Nosek and Lakens, 2014).
According to this model, scientists submit their study proposals (including the hypothesis, methods, and analysis plans) to be
peer-reviewed and accepted by the journal. Crucially, this step occurs before the data is collected and analyzed. Thus, the decision
to accept the study for publication occurs regardless of whether the data supports the hypothesis. Once the study is concluded, the
modified manuscript, with deviations from the planned protocol clearly marked, is submitted to the journal for publication. By
having to accept or reject publication when the results are still unknown, registered reports emphasize the scientific process rather
than the outcome. Similar to preregistrations, registered reports also aid in mitigating HARKing and THARKing.

Post-publication peer review
Alternatively, some journals embraced a post-publication peer review approach (Markie, 2015). In this model, a study is published
in an online, open-access platform where the reviewers’ comments (and any revisions made following) are also published (Cham-
bers and Tzavella, 2021).

Insufficient reporting

Two important guiding principles can help mitigate issues stemming from insufficient reporting: transparency, and detail.

Transparency
Preregistration is a powerful tool that allows documentation of the planned study design and analyses, but it does not specify the
level of detail the report needs to include. That is why a clear distinction between what was preregistered vs. exploratory must be
made clear. Despite the need to thoroughly register as much as possible in advance, reporting each aspect and step of the study is
impossible during the preregistration phase (as not everything is known in advance). In addition, a comprehensive report of the
entire study’s parameters and settings might be unfeasible at the publication stage due to the limitations of the publishing journal.
This is why transparencydopen materials (data, study paradigm) and codes (pre-processing and analyses pipelines)dis crucial.
Openness and transparency are the foundation of increasing experiments’ reliability. Together, preregistration, detailed reporting,
and open resources facilitate a proper replication attempt of the original study.

Detail
There have been attempts to create a standard basic level of detail, required for reporting a study. The Organization of Human Brain
Mapping (OHBM) erected Committees on Best Practices in Data Analysis and Sharing (COBIDAS) to create standard reporting prac-
tices. They have developed best practices in data analysis and result sharing for neuroimaging studies (fMRI: Nichols et al., 2017;
MEEG: Pernet et al., 2018). Even those are sometimes considered not comprehensive or clear enough (Pernet et al., 2020), and
recommendations continue to proliferate as different imaging technologies continue to develop. Yet, the fundamental principle
is identical: transparent, comprehensive, detailed reporting (together with sharing of all the study’s materials, methods, pipelines,
and settings) is crucial for a proper replication to occur.
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Deliberate misconduct: fabrication, falsification, and plagiarism (FFP)

Do your best
The competitive atmosphere of the scientific community might encourage some researchers to look for loopholes, allowing them to
increase their publication volume in mischievous ways. Science is done to gain knowledge about the world; neuroscience is a field
that aspires to improve our understanding of creatures’ minds and behaviors. It is important to remember that despite the impor-
tance of publications for a researcher’s career, publishing results of scientific inquiries is, first and foremost, for the greater good:
helping increase the existing body of knowledge regarding a particular phenomenon. Scholars should bear this in mind when con-
ducting research and avoid FFPs altogether.

Challenges and future directions

Detailed, thorough reporting has proven to be crucial for a study’s replicability and the ability to assess its contribution to the
field. Yet, journals do not enforce reporting and data sharing guidelines (Clayson et al., 2019). Thus, researchers are still able
to publish their work with limited reports that lack crucial information, and without sharing all the study’s resources (e.g., mate-
rials, pipelines, codes). Insufficient reporting and lack of sharing hinder replication studies, making it impossible to execute
a proper replication attempt. Moreover, when a replication attempt fails, the interpretation of the failure is unclear; were the orig-
inal study’s findings erroneous? Or did the replication study fail to capture a real effect? Thus, the definition of what makes a failed
replication attempt and the conclusions that can be derived from it are unclear. Notably, a successful replication attempt is also
subject to interpretation, and might be affected by the method used to define success. As reviewed in the article, replication
attempts vary in their type, extent, and the metrics used to evaluate their outcome.

In addition, even with clear reporting guidelines and standards, there remain many degrees of freedom in processing and
analyzing experimental data. For example, as previously mentioned, the COBIDAS standards are extensive, but not comprehensive
enough to capture all the parameters that differ between different research groups. The impact of researchers’ degrees of freedom can
be immense: For example, in fMRI data analysis, there are multiple ways to implement motion correction, spatial smoothing,
normalization, and high-pass filtering (see Box 3 in Poldrack et al., 2017). Furthermore, different approaches are used across
research groups even in implementing corrections for multiple comparisons. Thus, at each step of the process, a researcher makes
a data analysis choice that can influence the results. Demonstrating this effect, Botvinik-Nezer et al. (2020) have recently shown that
when 70 research groups were given the same dataset and set to test the same hypotheses, their conclusions differed considerably.
Thus, detailing the analyses pipelines is necessary to its fullest extent.

These issues have been emphasized in recent years, as more studies examine their ramifications in neuroscience. New initiatives
such as multi-lab collaborations are on the rise (e.g., fMRIflows: Notter et al., 2021; EEGManyLabs: Pavlov et al., 2021). Registered
reports are becoming more common (Goffin et al., 2019). The hostility that failed replications encounter was suggested to be
resolved by making clear precommitments regarding replication success (Nosek and Errington, 2020). Awareness of the importance
of increasing replicability and open science has also reached scientific funding agencies, with new ideas and initiatives being high-
lighted (e.g., Smaldino et al., 2019). Thus, although much more work still needs to be done, neuroscience studies are progressing
toward improved replicability via community accepted research practices, increased transparency, and data sharing.

Summary

Following the replication crisis, the importance of replication became apparent across disciplines. In neuroscience, adopting prac-
tices that increase research quality (and, therefore, might also increase replicability) has been on the rise. Although not consistently
enforced by scientific journals, improved scientific practices are becoming more routine. Studies are being preregistered, and their
materials are shared with the public. New formats, such as registered reports, both facilitate transparency in research practices and
allow for null results to be published. Guidelines aiming to improve research practices are becoming more popular among scien-
tists. Direct replication attempts have been published, and their conclusions raised important discussions about the way replica-
bility should be acknowledged in the scientific literature. And indeed, many questions about assessing replication and
implementing standard research and report practices remain. However, the attention the field allocates to the importance of repli-
cability has encouraged scientists to invest in better research practices. Will these practices improve replicability? Time will tell.
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